Spline

• Spline: *piecewise* polynomial

- Three issues:
 - How to connect these pieces *continuously*?
 - How easy is it to "*control*" the shape of a spline?
 - Does a spline have to *pass through* specific points?

Continuity

• Let's try another Bezier demo: Bezier spline

http://math.hws.edu/graphicsbo ok/demos/c2/cubic-bezier.html

• How to "smooth" the spline?

Continuity

- Smoothness can be described by degree of continuity
 - zero-order (C^0): position matches from both sides
 - first-order (C^1): position and 1^{st} derivative (velocity) match from both sides
 - second-order (C^2): position and 1st & 2nd derivatives (velocity & acceleration) match from both sides

Control

• Let's say you want to make a specific shape using these two curves. Which one is more controllable?

http://math.hws.edu/graphicsbo ok/demos/c2/cubic-bezier.html

https://www.benjoffe.com/co de/demos/interpolate

Control

- Local control
 - changing control point only affects a **limited part** of spline
 - without this, splines are very difficult to use
 - many likely formulations lack this
 - natural spline
 - polynomial fits

Interpolation / Approximation

• Interpolation: passes through points

• Approximation: merely guided by points

• Interpolation properties are preferable, but not mandatory

Catmull-Rom Spline

- A Bezier or Hermite curve interpolates two end points only
- What if we want a cubic spline interpolating all control points?
- Catmull-Rom Splines
 - One Hermite curve between two consecutive control points
 - Define end point derivatives using adjacent control points

• C¹ continuity, local controllability, interpolation

Natural Cubic Splines

- We want to achieve higher continuity (at least C²)
- 4n unknowns
 - *n* Bezier curve segments (4 control points per each segment)
- 4n equations
 - 2n equations for end point interpolation
 - (*n*-1) equations for tangential continuity
 - (n-1) equations for second derivative continuity
 - 2 equations: $x''(t_0) = x''(t_n) = 0$

• C² continuity, no local controllability, interpolation

B-splines (brief intro)

• Use 4 points, but approximate only middle two

- Draw curve with overlapping segments
 - 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc

• C² continuity, local controllability, approximation

Cornell CS4620 Fall 2008 • Lecture 18

© 2008 Steve Marschner • 9